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Abstract—Energy harvesting systems have emerged as an
alternative to battery-powered IoT devices. The systems utilize a
just-in-time checkpoint protocol that stores volatile states when a
power outage occurs, ensuring crash consistency. However, this
paper uncovers a new security vulnerability in the checkpoint
protocol, revealing its susceptibility to electromagnetic interfer-
ence (EMI). If exploited, adversaries could cause denial of service
or data corruption in victim devices. To defeat EMI attacks, this
paper introduces GECKO, a compiler-directed countermeasure
that operates on commodity platforms used in energy harvesting
systems without requiring hardware support. Our experiments
on real boards demonstrate that GECKO defeats the EMI attack
with a trivial performance overhead by 6% on average.

I. INTRODUCTION

The current landscape of the Internet of Things (IoT)
is increasingly reliant on energy-efficient technologies, in-
cluding limited battery lifespan, environmental impact during
production, and disposal issues after periodic replacements.
In response to these emerging problems, energy harvesting
technology has been extensively studied and applied as an
alternative to battery-powered IoT devices [14], [15], [30],
[32], [35]–[37], [43], [46], [70], [93].

However, energy harvesting sources are inherently unreli-
able, leading to frequent power outages. To mitigate this issue,
an energy harvesting system employs a capacitor as energy
storage, buffering harvested energy until a sufficient amount
is accumulated to run program; this is also called intermittent
system [55], [67]. To ensure crash consistency across power
failures, these systems utilize non-volatile memory (NVM) and
employ some form of recovery mechanisms that checkpoint
and restore volatile data, i.e., registers, across power outages.

The majority of prior works employ a just-in-time (JIT)
checkpoint protocol that gives an illusion that volatile registers
are non-volatile, allowing them to be persistent across power
outages [11], [14], [67], [68], [101]. To achieve this, the prior
works leverage an energy buffer and a voltage monitor. For
example, when the system is powering off, they detect the
power outage using a voltage monitor and checkpoint their
volatile registers into designated NVM space by utilizing the
energy buffered in a capacitor. On the other hand, when their
capacitor is fully charged, they also detect it with the help of
the voltage monitor and restore the checkpointed registers [11],
[14], [67], [68]; this technology has been implemented in a
processor known as nonvolatile processor (NVP) [14], [38],

[58]–[64], [80], [83], [96], [98], [101]. The takeaway is that
the voltage monitor is at the heart of intermittent systems
because it is an essential part of detecting a power outage
and checkpointing/restoring volatile states.1

Unfortunately, a voltage monitor is not always reliable [89]
due to cold-start glitch [79], various loads [74], clock noise [3],
[4], and electromagnetic interference (EMI) [29], [73], [92].
In particular, this paper reveals that adversaries can exploit
EMI to remotely inject malicious signals into the voltage
monitor of intermittent systems. By manipulating the output
of the voltage monitor, attackers can repeatedly trigger false
checkpoint signals, leading to a denial of service (DoS). More
importantly, adversaries can induce checkpoint and recovery
signals even when the energy buffer (capacitor) is not fully
charged. In such cases, victim systems fail to checkpoint all
volatile registers, resulting in data corruption and compromis-
ing the non-volatility of NVPs.

In this paper, we investigate the vulnerability of a voltage
monitor in intermittent systems by injecting EMI signals into
commodity platforms, such as TI-MSP430 [3], [4] or STM
ARM Cortex-M [2], [7]), sold and used today as intermittent
systems. This paper shows that a stabilized checkpoint signal
can be intentionally induced and controlled causing the DoS
and data corruption. Our experiments, which include both
direct power injection (DPI) and remote signal injection, reveal
that all nine platforms we analyzed are vulnerable to EMI
attacks. To address the vulnerability, this paper also examines
possible countermeasures [28], [44], [77], [84], [85], [90],
[100]. However, we found that the solutions are not only costly
but also impractical for power-hungry intermittent systems
since they often require additional hardware supports and
cause a significant performance overhead [28], [44], [77], [84],
[85], [90], [100]. Therefore, there is a compelling need for a
lightweight countermeasure that can thwart EMI attacks.

To this end, we introduce GECKO, a novel compiler-
directed countermeasure for intermittent systems to defeat
against EMI attacks. The key insight behind GECKO is that
the system can thwart EMI attacks if it closes the attack vector
(i.e., JIT checkpoint protocol). In other words, by eliminating
the attack surface, adversaries can no longer manipulate the

1The mechanism is similar to Intel’s Asynchronous DRAM Refresh (ADR),
where all pending writes are flushed to NVM during a power loss by utilizing
the buffered energy stored in a supercapacitor or battery [76]



Fig. 1: High-level organization of intermittent system: It
rectifies harvested energy, stores the energy in a capacitor,
and powers a processor via a power line.

voltage monitor to trigger false checkpoint/recovery signals,
which would otherwise result in DoS or data corruption.

However, GECKO may face a new challenge in achieving
crash consistency, as the system must ensure that all volatile
states are preserved across power outages without utilizing
the protocol [11]–[13], [34], [39]–[41], [47]–[50], [54], [95],
[97], [99]. To achieve correct power failure recovery without
the JIT checkpoint protocol, GECKO leverages another type
of power failure recovery solution, i.e., rollback recovery.
GECKO compiler forms a series of idempotent regions [51],
[53], ensuring that each region produces the same output
across power outages. Thanks to the nature of idempotency,
regardless of when a power failure occurs, GECKO ensures
the program remains intact and recoverable.

The rollback recovery mechanism requires inserting a num-
ber of checkpoint stores within a given program region or task,
inherently slowing down the performance (e.g., 50%∼400%
slowdown [65]). To address the performance degradation issue,
GECKO leverages a novel checkpoint pruning technique that
can remove a majority of checkpoint stores in each program
region without compromising the recovery guarantee [42],
[52]. We found that checkpoint stores can be removed if
they can be reconstructed when necessary. With that in mind,
GECKO rather reconstructs checkpoint stores only when the
systems are under attack, transiting the run-time overhead of
checkpoint stores to the EMI attack recovery overhead, which
is trivial in use cases (i.e. no attack). Furthermore, once the
EMI attack is defeated, GECKO re-enables the JIT checkpoint
protocol for better performance.

Through our experiments, we demonstrate that GECKO de-
feats EMI attacks with only an average 6% runtime overhead,
achieving about an 80% reduction in checkpoint stores. The
contributions of this paper can be summarized as follows:

• We demonstrate that EMI attacks cause critical security
implications such as denial of service and data corruption
in intermittent systems.

• We propose a compiler-directed solution called GECKO
that can defeat the EMI attacks by exploiting idempotent
processing with checkpoint pruning.

• Our real board experiments highlight the effectiveness
and the practicality of GECKO. It incurs only a 6%
runtime overhead on average.

II. BACKGROUND AND MOTIVATION

A. Intermittent System Architecture

Intermittent systems capture ambient energy and store it
in a capacitor as an energy buffer, utilizing this energy for
computation without relying on a battery. However, the distinc-
tive battery-less design makes them prone to frequent power
failure. As a result, it becomes crucial for energy harvesting
systems to ensure crash consistency, a mechanism that allows
them to resume programs after frequent power outages [8],
[14], [33], [86], [94].

To achieve correct power failure recovery, prior works have
introduced a checkpoint-and-restore-based crash consistency
solution, referred JIT checkpointing. The insight is that both
the register and memory states at the resumption point are
guaranteed to be the same as the states before power failure,
and thus there is no crash consistency problem, achieving
roll-forward recovery [38], [67], [86], [94]. For roll-forward
recovery, the systems monitor the voltage level of the energy
storage (i.e., a capacitor), using a voltage monitor. They then
perform checkpoints of all volatile states to nonvolatile check-
point storage just before a power interruption is anticipated.
When power comes back, the systems restore the previously
checkpointed states, enabling the interrupted program to re-
sume. This approach has been adopted in commodity micro-
controllers (MCUs) such as TI-MSP430 [3], [4], [6], [12],
[38], [67].

B. Roll-Forward Recovery: Just-In-Time Checkpoint

Intermittent systems primarily use NVM as their main
memory without a cache. They provide hardware support for
JIT checkpointing of volatile registers, ensuring the persistence
of the entire system [69]. When the operating voltage of the
system falls below a specific threshold (Vbackup), it checkpoints
the states of all registers into NVM. Upon the restoration of
sufficient power (Von), these saved register states are restored
from the NVM, allowing the previously disrupted program to
continue. It is assumed that the voltage monitor is reliable,
and the voltage monitor is at the heart of intermittent systems
because it is an essential part for detecting a power outage and
checkpointing/restoring volatile states [38], [58]–[64], [67],
[68], [80], [83].2

C. Voltage Monitor

Typically, there are two types of voltage monitors used in
intermittent systems: ADC- and comparator-based monitors.
Using ADC to Detect Power Loss. The majority of MCUs
for intermittent systems typically feature a 12-bit or 10-bit
analog-to-digital converter (ADC) peripheral, which is utilized
to monitor the input voltage [3], [4], [38]. This input voltage
is supplied by an energy harvester, as shown in Figure 1. In
this setup, the input voltage, referred to as VCC, is routed
to the voltage monitor’s ADC, as illustrated in Figure 2(a).

2One of the representative intermittent systems, NVP, use a hybrid register
file (HRF) circuitry comprising standard flip-flops and NVFFs, allowing
registers to be checkpointed into NVFF instead of NVM [63], [64], [80].
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(a) ADC-based Voltage Monitor (b) Comparator-based Voltage Monitor

Fig. 2: EMI attacks on voltage monitors

Subsequently, this input voltage is continually compared to
a fixed reference voltage (Vre f ) to detect any power loss
within the system, indicated by the condition VCC <Vre f . The
reference voltage is usually generated by an on-chip reference
module, which is supported by an internal capacitor or a
battery. When a power loss is detected, and JIT checkpointing
is required, the ADC monitor triggers a checkpoint function.
This function is responsible for preserving the volatile states
and ensuring correct power failure recovery.
Using Voltage Comparator to Detect Power Loss. The
voltage monitor can also be constructed using a comparator in
conjunction with a voltage reference to detect power loss [14],
[86], [94]. As shown in Figure 2(b), the input voltage sup-
ply, VCC, is fed to an external voltage comparator, and the
configuration of the comparator involves setting the reference
voltage, Vre f . The comparator compares the voltage signals
at the + and - input terminals. If the + terminal is more
positive than the - terminal, the comparator output is high. The
comparator is configured to trigger an interrupt if the harvested
voltage signal falls below the reference voltage, Vre f , i.e., an
interrupt is triggered if VCC falls below the threshold. Upon
power loss detection, the interrupt service routine disables the
voltage monitor and invokes a checkpoint and a shutdown
function, which saves the volatile state information and turns
off the device. On the other hand, when the input voltage is
higher than a reboot voltage level (another reference voltage,
i.e., Vreboot ), the voltage monitor sends a wake-up signal and
enables a checkpoint trigger, monitoring VCC. Note that it
provides a basic bridge between analog and digital domains
and acts as a 1-bit ADC.
Real Board Implementation. For JIT checkpointing, Texas
Instruments provides an open-source library called Compute
Through Power Loss (CTPL) with low-power platforms [18].
CTPL enables a processor to checkpoint its volatile states
and peripheral values in designated NVM space during a
power outage. It is compatible with both ADC-based and
comparator-based voltage monitors. The CTPL library allows
control over the JIT checkpointing voltage threshold and sleep
time; hereafter, this paper considers CTPL a type of NVP.

D. Electromagnetic Interference Attack

In recent years, prior studies have highlighted the conse-
quences of EMI attacks on low-power sensor devices [28],
[44], [77], [84], [85], [90], [100]. These studies demonstrate
that attackers can remotely inject malicious signals into sensor

devices, manipulating sensing data and posing significant
threats to user privacy and safety. In particular, they found
a low-power sensor device is more vulnerable to EMI attacks
than general-purpose computers [84]. This occurs primarily
because low-power sensor devices often lack effective noise
filtering circuits, allowing adversaries to tune the transmitted
EMI signal to the carrier frequency that matches the reso-
nant frequency of the target sensor component, resulting in
controlled sensing data. To this end, prior works introduce
countermeasures such as low-power noise filters, secure cir-
cuitry, dual sensors, and data randomization (will be discussed
in Section V-A).

With that in mind, we analyze a vulnerability in a voltage
monitor and elaborate on how an attacker can remotely inject
a malicious signal into intermittent systems. As described in
Figure 1, the intermittent system is equipped with a voltage
monitor and a capacitor as an energy buffer. The voltage
monitor respectively sends a wake-up and a checkpoint signal
when the energy buffer is fully charged and when a power
outage is about to occur. In this design, this paper exposes
that an attacker can intentionally generate the wake-up and
checkpoint signals by injecting EMI signals into the voltage
monitor when the victim device is active. Once the malicious
signal enters, it is superimposed and digitized by an ADC
as shown in Figure 2(a) or a voltage comparator as shown
in Figure 2(b). Finally, an incorrect checkpoint or wake-up
signal is induced in a processor, which can cause repeated
power outages (i.e., DoS) or data corruption.
Types of EMI Attacks. EMI attacks can be categorized
into two types: high-power EMI attacks and low-power EMI
attacks. High-power EMI attacks involve disruptions, frying,
and damaging the victim system [75]. Such a high-power
EMI tool can lead to degradation or complete loss of the
system’s main functions, resulting in technical issues. Prior
works have extensively proposed defense mechanisms against
high-power EMI attacks [72], [75]. In this paper, we focus
on low-power EMI attacks on intermittent systems, where
the attacker manipulates the voltage monitor to cause false
checkpoint and wake-up signals.

III. THREAT MODEL

This paper assumes that adversaries aim to deceive the
voltage monitor, causing repeated triggering of checkpoints in
the victim or corrupting the JIT checkpoint protocol, resulting
in checkpoint failure. We also assume that adversaries cannot
physically access the hardware or software of the target
system. Furthermore, this scenario excludes considerations of
a malicious human operator who could directly influence or
attack actual energy sources around the victim or manipulate
its input power, including voltage thresholds.
Applications. Intermittent systems are typically used for appli-
cations in various domains such as wireless sensor nodes, im-
plantable medical devices, highway toll cards, nano-satellites,
and wearables [24], [26], [31], [56], [71], [78], [81], [82].
These devices harvest ambient energy and run an infinite
loop that continually senses and triggers alarms in response
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to detected anomalies. For instance, wearable medical devices
like continuous glucose monitors, designed for diabetic pa-
tients [25], [27], [88], exemplify this concept. These devices
harvest energy from blood pressure and monitor various health
parameters, including temperature and blood sugar/glucose.
Notably, this monitoring occurs without the need for blood
sampling, allowing continuous surveillance even during sleep
or daily activities.
Weak Input Power. The actual harvested power is very
weak (0∼2000µW [64]). In such a challenging environment,
intermittent systems can function for brief periods (e.g.,
15ms [65]), rapidly exhausting the buffered energy, before
entering a long hibernation phase (e.g., more than 1s) [65].
Attack Scenario. Adversaries could launch an attack from
one to several meters, depending on the power of their attack
device and the susceptibility of the victim system. Malicious
EMI signals can penetrate typical physical barriers, such
as walls and windows, enabling the attack to be executed
even from adjacent rooms [84]. Moreover, adversaries might
sneakily leave or install a small remote control EMI-emitting
device around the victim. During the attack, two parameters
(frequency and amplitude of EMI signal) need to be adjusted.
Attack Device. Attackers can exploit various methods to
generate and emit malicious EMI signals. They may opt
for available signal generators, amplifiers, and antennas for
attacks. Alternatively, adversaries might choose to procure or
construct a specialized, compact, portable transmitter. For a
proof-of-concept study, we used a RF signal generator with
an antenna, equipped with gain control and a frequency range
encompassing the desired attack frequencies. While the power
of the EMI emitters utilized in our experiments is below 35
dBm, more sophisticated adversaries could leverage special-
ized equipment and techniques to enhance the effectiveness of
their attacks [28], [44], [77], [84], [85], [90], [100].
Assumptions. To ensure the effectiveness of EMI attacks,
attackers need to determine the specific frequency range that
will be effective. This can be accomplished in two ways:
through prior testing, or visual feedback. For prior testing,
we assume that attackers can obtain an identical device to
the target and experimentally determine the effective attack
frequencies beforehand [44], [84], [91]. For visual feedback,
we assume that attackers can visually monitor the target
device’s status to identify the effective frequency range. Once
the attacker has established the appropriate frequency and
power levels for the signals, ongoing feedback from the victim
device is no longer necessary.

IV. REAL SYSTEM DEMONSTRATION

In this section, we analyze the vulnerability and the attack
surface of intermittent systems by conducting DPI and remote
EMI injection experiments on typical voltage monitors in
commodity platforms. To generate EMI signals, we used an
Agilent E4437B and a N5171B EXG X-Series RF Analog
signal generators with a ZHL-4240 amplifier. For remote
attacks, we used a directional antenna [5] with the generators.

Fig. 3: The setup of direct power injections through different
injection points (P1 and P2) in a typical intermittent system.
In this design, the signal injection circuit is connected to the
injection points P1 and P2.

A. Direct Power Injection Experiments

1) Experimental Settings: To measure and analyze the
impact of remote EMI attacks on intermittent systems is
challenging, given the unpredictable nature of induced EMI
signals’ path and strength. To address the challenge, we con-
ducted direct power injection (DPI) experiments. DPI involves
directly injecting EMI signals into specific points on the
circuit. This method offers precise control over the power
of the injected signals and helps prevent interference from
unintentional EMI radiation on other parts of the circuit.

In our experiments, a DPI circuit was connected to each
potential signal injection point on a target system. The setup,
described in Figure 3, includes a capacitor as an energy
storage for the intermittent system, powered by a +3.3V DC
power source. Note that this environment is more resistant to
EMI attacks than use cases where the system is powered by
ambient energy sources, which typically provide much weaker
input power (refer to Section III). In other words, if the DPI
experiments are successful, it indicates that adversaries could
easily launch EMI attacks on intermittent systems in real-
world scenarios.

To induce DoS and data corruption, we utilized specific
EMI signals capable of causing controllable checkpoint and
recovery signals. Single-tone sine-wave EMI signals were in-
jected into each injection point (P1 and P2) in the experimental
circuitry. The frequency of the signals was swept from 1MHz
to 1GHz, with a consistent power injection level of 20 dBm.

2) Attack Analysis: To see the impact of EMI signals, we
measured the forward progress rate of current commodity in-
termittent systems under EMI attacks, i.e., how much progress
each system can make under the attack. The rate was measured
as follows: R = Tf orward/Tguarantee, where R is a rate, Tf orward
is the amount of time during which the system makes forward
progress from the point where the attack is launched, and
Tguarantee is the guaranteed period during which the system
can sustain.

The results, as depicted in Figure 4, reveal that EMI signals
at particular frequencies induce checkpoint signals, thereby
causing the DoS. Depending on the frequency of the injected
EMI signals, the checkpoint signals can be induced either
frequently or rarely, enabling adversaries to manipulate the
level of quality of service; we also found high frequencies
(above 50MHz) did not cause any problem in all systems we
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(a) MSP430F5529 (b) MSP430FR2311 (c) MSP430FR2433 (d) /MSP430FR4133 (e) MSP430FR5739

(f) MSP430FR5994 (g) MSP430FR6989 (h) MSP432P401R (i) STM32L552ZE

Fig. 4: DPI attack analysis on commodity micro-controllers with an ADC-based voltage monitor varying attack signal
frequencies. The X-axis represents the attack signal frequency, while the Y-axis represents the forward progress rate.

(a) MSP430F5529 (b) MSP430FR2311 (c) MSP430FR2433 (d) /MSP430FR4133 (e) MSP430FR5739

(f) MSP430FR5994 (g) MSP430FR6989 (h) MSP432P401R (i) STM32L552ZE

Fig. 5: Remote attack analysis on commodity micro-controllers with an ADC-based voltage monitor varying attack signal
frequencies with 20dBm. The X-axis represents the attack signal frequency, while the Y-axis represents the forward progress
rate.

tested. Also, the DPI experiments in Figure 4 demonstrate
that injecting signals into P2 causes lower forward progress
rates in a broader frequency range compared to P1. This is
mainly because the P2 signals can affect the ADC/Comparator
more directly compared to P1 signals. This effect can be more
significant when injected directly into the ADC/Comparator;
however, it is out of scope in our threat model.

B. Remote EMI Attack Experiments

1) Experimental Settings: We further investigated remote
EMI injections that can also control the output of the voltage
monitor circuitry and thus induce the checkpoint/recovery
signals from the victim monitor. For experiments, we used
a +3.3V DC supply to power intermittent systems.

We transmitted single-tone sine-wave EMI signals, sweep-
ing the frequency from 5MHz to 500MHz at intervals of

(a) Experimental setting for remote
attacks

(b) Remote attack outside of a room

Fig. 6: Remote attack environment

1MHz. The transmitting power was set at 35dBm—though we
varied the level of the attack signal power from 0 to 35 dBm
to estimate the correlation between the power of the attack
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Model Voltage Monitor ADC- Rmin@0.1m/Freq(MHz) Comp.-Rmin@0.1m/Freq(MHz) ADC-Fmax@0.1m/Freq(MHz)

TI-MSP430FR2311 ADC 3.1% / 27MHz N/A 41% / 27MHz
TI-MSP430FR2433 ADC 4.2% / 27MHz N/A 41% / 27MHz
TI-MSP430FR4133 ADC 3.6% / 27MHz N/A 42% / 28MHz
TI-MSP430F5529 ADC 4.0% / 27MHz N/A 41% / 16MHz

TI-MSP430FR5739 ADC 1.8% / 27MHz N/A 11% / 27MHz
TI-MSP430FR5994 ADC & Comp. 4.0% / 27MHz 1.0∗10−2% / 5MHz & 6MHz 28% / 27MHz
TI-MSP430FR6989 ADC & Comp. 3.6% / 27MHz 1.2∗10−2% / 27MHz 35% / 27MHz

TI-MSP432P (cortex-m4) ADC & Comp. 3.3% / 27MHz N/A 40% / 27MHz
STM32L552ZE (cortex-m33) ADC & Comp. 4.8% / 17MHz N/A 24% / 18MHz

TABLE I: Results of EMI attack experiments on real-world energy harvesting MCUs. ADC-Rmin and Comp.-Rmin represent the
minimum forward progress rate under EMI attack with an ADC-based monitor and a comparator-based monitor, respectively.
ADC-Fmax represents the maximum checkpoint failure rate at a specific frequency.

(a) MSP430FR5994 (b) MSP430FR6989

Fig. 7: Remote attack analysis on commodity micro-controllers
with a comparator-based voltage monitor varying attack signal
frequencies. The X-axis represents the attack signal frequency,
while the Y-axis represents the forward progress rate.

Fig. 8: Attack distance analysis: Results of remote attack
experiments on intermittent systems within a 5-meter attack
range.

signal and the forward progress rate of the victim system.
In our experiments, the target system was placed 5m away
from an attacker’s antenna; a 5m distance is long enough to
attack a victim device sneakily in our attack scenario. Figure 6
describes the setting in detail.

2) Attack Analysis: We demonstrate adversaries can inten-
tionally induce checkpoint/recovery signals and cause DoS
and data corruption by remote EMI attacks in commodity
intermittent systems.
Inducing a DoS with specific EMI signals. We monitored
the forward progress rate of intermittent systems and recorded
it with a laptop while sweeping the signal frequency. We
observed that under EMI attacks, regardless of the type of
voltage monitor (ADC-based or comparator-based), all inter-
mittent systems that we tested suffered from DoS at certain
frequencies as shown in Figure 5 and Figure 7, i.e., the forward
progress rate is almost 0. Moreover, we found that, at the
malicious frequencies, the systems were not able to finish

(a) Remote attack analysis on MSP430FR5994 with an ADC-based voltage
monitor

(b) Remote attack analysis on MSP430FR5994 with a comparator-based
voltage monitor

Fig. 9: Remote attack analysis on MSP430FR5994 in real-time
with an ADC-based voltage monitor and a comparator-based
voltage monitor.

I/O tasks; they got instead stuck indefinitely in the middle of
(atomic) task execution such as sending a message or sensing.
In this case, users cannot read the necessary information from
the victim’s device; more detail can be found in Table I, ADC-
R and Comp-R columns.
Inducing a checkpoint failure with specific EMI signals.
EMI attacks can lead to data corruption due to checkpoint
failures. When attackers generate RF signals at 27 MHz, they
can remotely trigger checkpoint and recovery signals in a vic-
tim system repeatedly. In particular, when the recovery signals
are triggered within a malicious voltage range (Vf ail), where
Vo f f <Vf ail <Vbackup, the system executes the JIT checkpoint
protocol without sufficient energy, thereby resulting in check-
point failures. Notably, the false checkpoint/recovery signals
can only be induced while the victim is powered on. To
measure the checkpoint failure rate, we define a performance
metric as follows: F = N f ail/Ncheckpoints, where F is the failure
rate, N f ail is the number of checkpoint failures, and Ncheckpoint
is the total number of checkpoints. The result can be found in
Table I, ADC-F column.
EMI power and distance relationship. We further investigate
the relationship between the power of the attack signal and the
attack distance. Figure 8 demonstrates that an EMI remote
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attack can be launched 0∼5m away from a victim device
outside of a room (even when a door is closed). Attackers need
to control the magnitude of the EM signal to gain effective
control of the victim device. Theoretically, the distance of
an EMI attack is directly proportional to the power of the
EMI signals [84]. The experiment also demonstrates that the
distance over which the malicious signal can propagate may
exceed 5 meters as the power of the signal increases.
EMI attack analysis in real-time. Attackers can exploit
precise frequency and power adjustments to control forward
progress rates, making their actions less detectable. Figure 9
illustrates various attack scenarios conducted at different times,
showing how adversaries can deliberately control the forward
progress rate by exploiting different RF signal frequencies.
As described in Figure 9(a) and Figure 9(b), adversaries can
control the aggressiveness of their attacks by adjusting the
attack signal frequency, making the attacks more stealthy by
minimizing their impact and delaying detection by the victim
system.
EMI attack analysis on other components. We con-
ducted additional experiments to see whether other compo-
nents within a processor are vulnerable to EMI attacks. We
found that components, such as registers, cache, and internal
clocks, are resistant to remote EMI attacks mainly because
they are typically enclosed within a microprocessor, offering
natural shielding and minimizing attack surface.3 In contrast,
a voltage monitor is connected to an external capacitor, which
is decoupled from a processor, thereby increasing the attack
surface as shown in Fig.3.

V. COUNTERMEASURES

This section explores conventional countermeasures with
hardware supports (Section V-A1) and software supports (Sec-
tion V-A2). To this end, this section introduces GECKO, a
compiler-directed countermeasure (Section V-B).

A. Conventional Countermeasures

1) Hardware Solution: Within a decade, many solutions
that incorporate both hardware and software have been pub-
lished. However, to the best of our knowledge, these prior
solutions are not suitable for power-hungry intermittent sys-
tems. One might suggest securing the JIT checkpoint protocol
by incorporating hardware components with a voltage monitor,
such as filters or differential comparators, to mitigate the EMI
signals [28], [44], [77], [84], [85], [90], [100]. However, the
filters are designed solely to reduce noise and are incapable
of thwarting EMI attacks completely. Moreover, incorporat-
ing additional hardware components such as capacitors and
conductors [44], [77], [90], or developing custom hardware
circuitry like hardware anomaly detectors [84], [85], results
in increased power consumption and space requirements in
devices. These solutions, while effective in detecting attacks,

3Prior works demonstrated that such components can also be vulnerable to
remote EMP or EMFI attacks [9], [10]; however, such attacks are beyond the
scope of our study, as they often require close proximity and carry a higher
risk of detection (Sec. II-D).

are not only costly but also power-intensive, thus being overkill
for intermittent systems. Also, other conventional physical
countermeasures against EMI attacks include fully shielding
the voltage monitor and its signal line to the processor with
aluminum foil or placing the victim device inside a Faraday
cage to block EMI completely. Unfortunately, these solutions
are impractical for typical energy harvesting applications, such
as wearable or healthcare devices, and are not cost-effective.

2) Software Solution: There have been several efforts to
address the EMI attacks through software-based approaches.
Fang et al. [28] conducted a study employing a fusion model
trained with a Feature Extraction Unit (FEU) and Long Short-
Term Memory (LSTM) to detect EMI attacks. The prior work
from Zhang at al. [100] proposed a method involving the
utilization of random secret bits corresponding to the activation
and deactivation of analog sensors. The output of the sensors
is then compared to the expected output to detect the presence
of intentional EMI attacks, e.g., if the outputs are not matched,
then it assumes the device is under attack.

Software-based solutions are more cost-effective and power-
efficient compared to hardware-based schemes. However, they
can introduce a significant performance overhead due to the
need for non-trivial model training [28], new instruction set
architectures, secret bit sequence generation, and repeated
power cycling, which can degrade the quality of service [100].
More importantly, they cannot be applied to intermittent
systems since they are unable to achieve crash consistency
across frequent power outages, which is critical in an energy
harvesting domain; Table II compares the prior works to our
proposed countermeasure in more detail.

B. GECKO Compiler

To this end, this paper introduces GECKO, a compiler-
directed countermeasure for secure intermittent systems with-
out requiring user intervention or incurring any additional
hardware support. The key insight is that intermittent systems
can thwart EMI attacks if they close the attack vector (i.e., JIT
checkpoint protocol). By closing the attack surface, adversaries
can no longer manipulate the checkpoint protocol. Also, as
discussed in Section IV-B2, by reducing the attack surface by
disabling the voltage monitor, the system is able to maintain
forward progress across EMI attacks.

To achieve crash consistency without the JIT checkpointing,
GECKO leverages another type of power failure recovery
solution, i.e., rollback recovery. GECKO inserts checkpoint
stores into a given program by leveraging idempotent pro-
cessing [20], [21], [87]. It generates a sequence of idempotent
(recoverable) program tasks or regions that can be effectively
recovered in case of power failure. Note that the rollback
recovery is robust against the EMI attacks because the rollback
recovery does not require the use of the voltage monitor which
is the vulnerable component of the EMI attack. By closing the
attack surface, the attacker cannot exploit the voltage monitor
to induce fake signals.

However, the rollback recovery mechanism requires the
insertion of a number of checkpoint stores in a given program
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Prior works Target HW/SW Energy Efficiency Power Failure Recovery Intermittent System Applicability
Ghost Talk [44] Microphones Hybrid Low No N/A

Rocking Drones [77] Drones Hybrid Low No N/A
Trick or Heat [84] Incubators Hardware Low No N/A

SoK [90] Analog Sensors Hybrid Low No N/A
Detection of EMI [100] Temperature Sensors, Microphones Software High No N/A
Transduction Shield [85] Pressure Sensors, Microphones Hybrid Low No N/A

Detection of Weak EMI [28] Sensors from IIoT Software Low No N/A
GECKO Voltage Monitor Software High Yes Applicable

TABLE II: Comparison of prior solutions for EMI attack mitigation. While previous works introduce solutions for mitigating
EMI attacks, they are not applicable to intermittent systems due to the lack of power failure recovery mechanisms.

region or task, inherently slowing down the performance
(e.g., 50%∼400% slowdown [10], [16], [57], [65], [67], [87].
Moreover, they often require a new programming language
with user intervention, which is challenging for end-users to
implement [16], [17], [57], [65]. To defeat EMI attacks without
causing such issues, GECKO combines the benefits of
JIT checkpointing and idempotent processing while avoiding
their downsides. Unlike the original JIT checkpoint proto-
col, GECKO checkpoints registers during program execution
in case of EMI attacks. Unlike the idempotent processing,
GECKO does not rollback to the beginning of the interrupted
program region across power failures, but resumes the inter-
rupted program from the same point where it was stopped in
the same way as the JIT checkpointing as long as the device
is not under attacks.

The high-level idea is that GECKO keeps a given pro-
gram always intact from checkpoint failure like a software-
based solution. Upon detecting EMI attacks, GECKO disables
the JIT checkpoint protocol and rolls back to the entry of
the interrupted program region by restoring compiler-assisted
checkpointed registers. On the other hand, in the absence of
attacks, GECKO keeps running with the JIT checkpointing
on the systems.

VI. GECKO IMPLEMENTATION

A. Detection of EMI Attacks

GECKO dynamically detects EMI attacks in a reactive
manner. This approach is chosen for its accuracy and per-
formance benefits compared to a proactive approach, which
tends to slow down performance as a software-based crash
consistency solution (Section V-A2). To detect the attack
reactively, GECKO exploits two different mechanisms: (1) an
acknowledgment (ACK) based detection and (2) a timer-based
detection. First, GECKO utilizes an ACK as a barrier of the
JIT checkpoint protocol. After checkpointing all registers in
NVM/NVFF, GECKO persists the ACK, treating it as if it
were the last register to be checkpointed, and toggles the ACK
at each reboot time (e.g., 0→1→0 ...). In this way, if the ACK
has not changed across power failure, GECKO assumes that
the system is under attack, potentially failing to checkpoint
and causing data corruption.

Second, GECKO forms a series of program regions in
such a way that each region must be completed within
one capacitor charge cycle by considering its minimum time

bound of power-on period.4 The insight behind this is that
it can detect EMI attacks if a power outage occurs more
than once in the same program region. Based on the insight,
GECKO incorporates a verification step into the boot protocol
to confirm whether the system has completed at least one
program region following a power outage. If it turns out
that no regions are completed, GECKO assumes that the
system is under DoS attacks. Upon detection in either case,
it disables the JIT checkpoint protocol and relies on the
idempotent processing, which allows the program to re-enter
the interrupted idempotent program region and restores all
compiler-assisted checkpoint registers.
Discussion. One might argue that an adversary could remotely
power on and off a victim device by spoofing malicious RF
signals, potentially leading to a denial-of-service (DoS) issue.
However, we found that this scenario is not feasible. This is
mainly because RF attack signals are too weak to control the
power line effectively (refer to Sec. III). Instead, an energy
harvester within the victim system collects the attack signals
as ambient energy (i.e., RF) and stores them in a capacitor until
it is fully charged. This harvester-device platform is commonly
used in current intermittent system platforms [1], [3], [8], [10],
[38], [65], [66], [86].

B. Idempotent Processing with Lightweight Checkpointing

GECKO compiler allocates separate checkpoint storage
in NVM, which is different from the storage used for JIT
checkpoint protocol. Utilizing this separate checkpoint storage
in NVM, GECKO leaves checkpoint stores at compilation
time, creating a series of idempotent program regions. Thanks
to the double checkpoint storage, GECKO can ensure that a
given program remains intact even in the face of EMI attacks.

For idempotent processing with lightweight checkpointing,
GECKO exploits five-step compiler passes. First, GECKO
compiler front-end translates the source code into LLVM
intermediate representation (IR) [45] and applies traditional
compiler optimizations on the IR. Second, the optimized IR
goes through an idempotent region formation pass [22]. Third,
after constructing the idempotent regions, GECKO analyzes
the size of each idempotent region to ensure forward progress
execution. To measure the size of each region, GECKO
leverages the worst-case execution time (WCET) analysis [12]
and checks for a given region (r) whether WCET(r) is less

4Given the fully-buffered energy, GECKO analyzes how long the system
can sustain its execution under the worst-case power consumption mode [12].
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Fig. 10: Comparison between (a) GECKO without pruning
and (b) GECKO with pruning optimization.

than the minimum time bound of the power-on period. If the
execution time of a given region exceeds a threshold, GECKO
will flag it. Fourth, for any given vulnerable idempotent region
whose execution time is longer than a threshold, GECKO
splits it into smaller regions so that each region can be
completed within a single power-on period [12]. Then, the
compiler inserts checkpoint stores, loops back to the WCET
analysis step, and re-checks until all regions meet the timing
requirement.
Region formation. For idempotent region formation,
GECKO employs alias analysis to identify all possible mem-
ory anti-dependencies [22], [42], [52]. To ensure correct exe-
cution, every execution path from an anti-dependent load/store
pair must cross at least one region boundary. GECKO avoids
cutting memory writes preceding anti-dependencies, forming
Write-After-Read-After-Write (WARAW) dependencies, since
these still maintain idempotence [22]. However, as WCET
analysis compiler pass may inadvertently cut these depen-
dencies and compromise idempotence, GECKO conducts an
additional idempotent region formation pass after the WCET
pass to ensure idempotence for all regions.
Loop and I/O operation. It is challenging to analyze loops
and I/O operations with compiler support. To this end,
GECKO places a region boundary in the loop header to
construct correct idempotent regions as prior works [12], [87],
[99]. For I/O operations, GECKO compiler also relies on
intra-procedural analysis, i.e., GECKO places region bound-
aries at any interrupts, asynchronous events, and function calls.
In other words, GECKO treats them as separate regions.

C. Checkpoint Pruning

The overhead of idempotent processing correlates to the
number of checkpoints executed at runtime. To minimize
the number of checkpoint stores, GECKO leverages a novel
compiler analysis, i.e., checkpoint pruning [42], [52], that
can identify unnecessary checkpoints based on the following
insight: some checkpoint stores can be pruned as long as
they can be reconstructed across power failure. In other
words, given a register input r of a program region Rg, it
is unnecessary to checkpoint all updates for r, as long as r’s
value can be safely reconstructed.

To reconstruct pruned checkpoint values, GECKO gener-
ates recovery blocks and executes them in the wake of power

failure. The recovery blocks are similar to traditional program
slices but come with additional requirements. After success-
fully building the blocks, GECKO removes the corresponding
checkpoints. Then, in the wake of power failure, GECKO
runtime will reconstruct the original value by executing the
recovery blocks. It is important to note that although the re-
covery block execution overhead for checkpoint reconstruction
seems to be the same as the original checkpoint overhead, this
is not true. The recovery block execution only occurs when the
system is under attack, causing its overhead only in specific
scenarios. In other words, checkpoint pruning allows GECKO
to shift the runtime overhead of idempotent processing to EMI
attack recovery, i.e., the overhead is minimized in the absence
of EMI attacks, effectively optimizing the performance.

Figure 10 demonstrates how GECKO works. Figure 10(a)
illustrates the control flow graph divided into idempotent
regions (R.g #1) using a region partitioning algorithm based on
Ratchet [87], with red dashed lines indicating region bound-
aries. GECKO checkpoint stores to provide guaranteed recov-
ery where the register inputs to R.g #1 are R2-5. Figure 10(b)
minimizes the performance overhead with checkpoint pruning
as the resultant recovery block for R.g #1. For example, the
values of R2, R4, and R5 can be reconstructed by executing
the recovery block. In this example, GECKO can achieve over
80% checkpoint reduction by pruning the checkpoint stores;
this paper will discuss about the impact of checkpoint pruning
in Section VII.

D. Checkpoint Integrity

For correct recovery, GECKO must ensure the integrity
of the checkpoints. Otherwise, the input registers of an
interrupted region, which are checkpointed in earlier re-
gions, may be overwritten by the checkpoints of the region.
Prior works achieve the checkpoint integrity with double-
buffering [65], [87]. It declares two register file arrays (e.g.,
int RF[2][16]) as checkpoint storages and, at each region
boundary, flips the first boolean array index variable. This
allows one of the two arrays to be intact while the other
is written by centralized checkpointing during which power
outage can occur.

Unfortunately, GECKO cannot directly use this simple
technique. Since some checkpoints are pruned by GECKO,
each register should have its own checkpoint storage index
variable, that must be flipped every time it is checkpointed, to
use double-buffering. This seems to be a significant overhead.
For example, checkpointing 16 registers with double-buffering
costs: 16 CheckpointStores + 16 IndexStores + 16 IndexLoads.

To overcome this challenge, GECKO statically assigns a
different array index to neighboring checkpoints of the same
register. This can be reduced to a simple 2-coloring problem
which treats the array index as a color [12], [42], [52]. In
particular, the coloring might fail at a join point in the control
flow graph of the program. GECKO solves this problem by
selectively inserting additional checkpoints to the problematic
control flow path. The rationale here is to ensure that the
checkpoints of a given register over the incoming paths to
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the join point always share the same color, i.e., checkpoint
storage index.

GECKO colors the checkpoint using a pre-order depth-
first search starting from one path. Then, when it tries to
color along the other path, a conflict may happen, i.e., two
neighboring checkpoints can be assigned the same storage
index for a register. To resolve the conflict, GECKO creates
a new region between the conflicting regions and inserts an
additional checkpoint, that saves the problematic register to a
different index.

E. Recovery Block

Constructing recovery blocks is a key part of checkpoint
pruning to ensure correct power failure recovery. To determine
whether the checkpoints can be eliminated, GECKO checks
the integrity of the recovery blocks’ data and their control
flow. In other words, if and only if the recovery blocks can
reconstruct the value of register inputs, GECKO can eliminate
the checkpoint stores in a given program.

To generate recovery blocks, GECKO analyzes the program
dependence graph since the recovery blocks must depend on
data dependence and control dependence backtracking [42],
[52]. First, GECKO leverages the data dependence back-
tracking to ensure that the resulting blocks can recompute
the values of register inputs from static checkpoints. In the
process, GECKO traverses in reverse through the vertices of
the dependency graph by following data-dependent edges in
a depth-first search method. The notation v r−→

δ d
v′ is used to

represent that v relies on data from v′, where v′ defines the
register r utilized by v. When provided with a register input r
for a region Rg, GECKO conducts backtrack traversal along
a series of vertices (RgE

r1−→
δ d

v1
r2−→
δ d

. . .
rn−→
δ d

vn), where RgE

indicates the entry point of region Rg dependent on r1, and
vn marks the final node in a path. The backtracking can be
terminated in three conditions: when the vertex vn has no
data-dependent edge, when the vertex vn has already been in
a set of the minimum checkpoint set, and when the vertex vn
is unsafe. Second, GECKO utilizes the control dependence
backtracking to guarantee that the control flow in the recovery
blocks matches the original control flow. Assume a vertex vi is
associated with a group of vertices (V) that are data-dependent
on register r, denoted as ∀v′i ∈ V, vi

r−→
δ d

v′i. After successfully

tracing all the data-dependent paths via vi, GECKO ensures
the integrity of control flow to ensure that the recovery slice
produces the expected value of r at vi.

F. Back to Normal!

Once the EMI attack is mitigated, GECKO re-enables the
JIT checkpoint protocol. Given that EMI attacks can poten-
tially occur at any moment, GECKO attempts to reactivate
the protocol at reboot times while monitoring for signs of an
attack. GECKO checks whether the voltage monitor sends the
checkpoint signal within the initial region following a power
outage. If not signaled, GECKO assumes that the threat has
been mitigated. However, if the assumption turned out to be

incorrect, i.e., the attack was not defeated, GECKO disables
the JIT checkpoint protocol again and rolls back to a recent
idempotent recovery point. This incurs no harm because an
idempotent program is inherently resilient and ensures correct
recovery, and thus the attempted JIT checkpointing does not
lead to incorrect recovery.

VII. EVALUATION

A. Experimental Setting

To evaluate the impact of GECKO, we conducted exper-
iments with NVP, the idempotent compiler (Ratchet [87]),
and GECKO, having a 1 mF supercapacitor as an energy
buffer on a real evaluation board (MSP430FR5994), whose
vulnerable frequency range was the smallest among all devices
we tested as shown in Fig. 5. NVP is a basis/representative of
all recent intermittent system solutions that are equipped with
the JIT checkpointing mechanism, and Ratchet is a compiler-
directed rollback recovery scheme that does not require a new
programming language or user intervention. To implement
NVP, we used TI-CTPL library [18] on the evaluation board.
In this environment, we analyzed the security vulnerability by
injecting EMI signals using all schemes.

B. Performance Analysis

To analyze the performance overhead of GECKO, we mea-
sured the execution time of each application on NVP, Ratchet,
and GECKO. We set NVP as the baseline and compared the
performance of each scheme to the baseline. We conducted
experiments in three scenarios: (1) when the system is free
from power outages (Section VII-B1), (2) when the system is
under EMI attacks (Section VII-B3), and (3) when the system
is in real energy harvesting environment (Section VII-B4).

Fig. 11: Normalized execution time overhead of GECKO with
and without (w/o) the pruning. The baseline is NVP.

1) Performance Analysis Without Power Outage: Figure 11
describes the performance overhead of each recovery scheme
compared to the baseline. When there is no attack, Ratchet
causes a performance overhead of approximately 2.4x because
it executes checkpoint stores as demonstrated in the prior
work [87]. On the other hand, GECKO causes about 6% per-
formance overhead on average, compared to the baseline. This
is possible because the compiler-assisted checkpoint overhead
is negligible thanks to the checkpoint pruning technique. We
also measured the performance overhead of GECKO without
the pruning optimization. GECKO without the optimization
causes about 30% performance overhead.
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Fig. 12: Checkpoint reduction analysis: Gray boxes represent
the checkpoint stores that can be removed by the checkpoint
pruning technique.

2) Checkpoint Pruning Analysis: To analyze the perfor-
mance improvement of checkpoint pruning in more detail,
we measured the number of checkpoint stores of both non-
optimized and optimized (pruned) versions of GECKO. Fig-
ure 12 shows that when checkpoint pruning is enabled, it can
reduce about 80% of checkpoint stores that are required for
GECKO non-optimized version.

3) Performance Analysis With EMI Attacks: We conducted
our experiments in realistic energy harvesting environmental
setting with EMI attacks. For energy harvesting environ-
ments, we employed a power generator constructed using
MSP430FR5969 and interfaced it with our evaluation board
via GPIO pins. A RF power trace was utilized, inducing
a power outage at a frequency of 1Hz. While the power
generator are providing some power to the evaluation board,
we remotely generated malicious EMI signals. To evaluate the
performance of each scheme, we measured the throughput
of each scheme when they were under EMI attacks. For
throughput, we counted the number of application completion
times during one minute, i.e., #.o f .comp

1min. ; we set the NVP
without EMI attacks as a baseline.

We found that GECKO can make forward progress while
NVP and Ratchet fail due to the DoS problem. Specifically,
NVP was not able to reboot when its registers were corrupted
by EMI attacks, and some regions in Ratchet are too long to be
completed within one capacitor charge cycle, thereby leading
to the DoS problem. On the other hand, GECKO kicked in the
idempotent processing successfully once it detected the EMI
attacks, providing a service even under EMI attacks. Overall,
GECKO has a 41% throughput on average compared to the
baseline, i.e., NVP’s original throughout
EMI Attack Detection. To check whether GECKO can
detect EMI attacks without losing data in various dynamic
environments, we conducted experiments involving the injec-
tion of malicious EMI signals. Six different attack scenarios
were constructed for the experiments: (a) no attack, (b) attack
at 40 minutes, (c) attack at 30 minutes, (d) attacks at 20
and 40 minutes, (e) attacks at 15, 30, and 35 minutes, and
(f) attacks at 10, 25, and 40 minutes, as shown in Fig-
ure 13a, 13b, 13c, 13d, 13e, and 13f, respectively. We found
that when EMI attack was launched, GECKO immediately
detected it by checking the ACK across power failure (Sec-
tion VI-A). GECKO could also restore the correct checkpoint

stores by reconstructing the required values and kept providing
a service. On the other hand, when the EMI attack was ended,
GECKO successfully got back to JIT checkpointing after
ensuring its functionality as shown in Figure 13.

4) Performance Analysis In Real Energy Harvesting Envi-
ronment: To assess the performance overhead of GECKO in a
real energy harvesting environment, we conducted experiments
using a Powercast P2110-EVB RF energy harvester [1], in the
same way as prior works [12], [23], [68]. Powercast TX91501-
3W transmitter, emitting an RF signal at a center frequency
of 915 MHz, was used to power the evaluation board.

For performance analysis, we ran benchmark applications
on three different schemes: Ratchet, NVP, and GECKO, as
depicted in Figure 14. Ratchet showed the worst performance
among the tested schemes, primarily due to a number of
checkpoint stores. On the other hand, GECKO caused about
6% performance slowdown compared to NVP. This small
overhead caused by GECKO was because it incurred only a
few checkpoint stores without executing any recovery blocks.

C. Code Size Analysis

basicmath bitcnt blink crc16 crc32 dhrystone dijkstra fft fir qsort string. avg
# ckpt. 150 83 6 20 58 139 108 303 41 59 1128 81

TABLE III: The total number of checkpoint stores generated
by GECKO in each application

On average, GECKO incurs only 6% binary size overhead.
Additionally, the number of recovery blocks for each applica-
tion is approximately 7, with an average of 6 instructions in
each block. In the wake of a power failure, GECKO needs to
locate the correct recovery block if an EMI attack is detected.
To manage the recovery blocks, GECKO has a look-up table
consisting of about 130 instructions. Although it seems like a
costly recovery process, GECKO does not cause any pressure
on the memory usage at run-time because the recovery cost is
applied only when an EMI attack is detected. In other words,
GECKO does not execute the recovery blocks with the look-
up table when there is no attack. Also, we counted the number
of checkpoint stores generated by GECKO in each application
(Tab.III). GECKO caused about 81 stores on average.

D. Capacitor Size Variation

For the capacitor size sensitivity analysis, we conducted
additional experiments within the same environment used for
performance analysis, varying the capacitor size. In particular,
we set the minimum capacitor size to 1 mF and the maximum
capacitor size to 10 mF. Although it was possible to decrease
the capacitor size further, smaller capacitors were found to
degrade performance in a prior work [14]. We configured
the checkpoint voltage thresholds accordingly; all capacitors
were set to buffer the same amount of energy regardless
of capacitance. With this configuration, we measured the
performance of NVP and GECKO, varying the capacitor size:
1 mF, 2 mF, 5 mF, and 10 mF.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Fig. 13: Attack detection and recovery analysis varying attack patterns and recovery solutions. 0% throughput represents a
denial of service.

Fig. 14: Performance results in energy harvesting situation.
We compare GECKO with Ratchet and NVP. Y-axis shows
the normalized performance overhead time compared to NVP
as baseline.

Fig. 15: Total execution time of each solution on average
varying capacitor size.

Figure 15 shows the total execution time of GECKO and
NVP on average, where lower values indicate better per-
formance. Overall, the performance of GECKO consistently
matches that of NVP. Both schemes perform optimally when
the capacitor size is 1 mF. However, as the capacitor size
increases, their execution time exponentially rises. This is
primarily due to the substantial increase in charging time with
larger capacitor sizes.

VIII. OTHER RELATED WORKS

Recently, researchers have identified security vulnerabilities
in intermittent systems and proposed various countermeasures.
Cronin et al. exposed that adversaries can deliberately wear
out NVFFs in NVP to cause data corruption, i.e., wear
out attacks [19]. They assume that adversaries can execute

malicious code to rapidly consume energy and trigger frequent
checkpoints, wearing out the checkpoint storage. To mitigate
this vulnerability, they propose rotating the checkpoint storage
location, which helps to reduce the wear-out rate. On the other
hand, Choi et al. found that the JIT checkpoint mechanism
can be corrupted when a capacitor (i.e., energy storage) is
degraded [10]. They also discovered that such degradation of
capacitor can be used as an attack vector, which they named as,
Caphammer [9]. In use cases or attack scenarios, the capacitor
can be degraded over time, and thus it may not be able to
store a sufficient amount energy for correct checkpointing. To
address the issue, they proposed a runtime system that can
detect the degradation and recover the degraded capacitor. De-
spite prior attacks and solutions, current intermittent systems
remain vulnerable to EMI attacks that are more precise and
farther attacks than the high EMP attacks. To the best of our
knowledge, GECKO is the first compiler-directed approach to
defeat against these attacks.

IX. CONCLUSION

This paper exposes a new security vulnerability in intermit-
tent systems. We found that EMI attacks can control a voltage
monitor in the systems, resulting in data corruption and DoS
issues. To defeat the attacks, this paper introduces GECKO, a
compiler-directed mitigation solution without requiring hard-
ware support. For performance optimization, GECKO lever-
ages a checkpoint pruning technique with recovery blocks.
Our experiments demonstrate that GECKO can successfully
thwart EMI attacks and achieve correct recovery against them,
causing only 6% performance overhead.
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voltage-to-time converters,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 68, no. 4, pp. 1078–1082, 2020.

[74] E. Ruppel, M. Surbatovich, H. Desai, K. Maeng, and B. Lucia,
“An architectural charge management interface for energy-harvesting
systems,” in 2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). IEEE, 2022, pp. 318–335.

[75] F. Sabath, “What can be learned from documented intentional electro-
magnetic interference (iemi) attacks?” in 2011 XXXth URSI General
Assembly and Scientific Symposium. IEEE, 2011, pp. 1–4.

[76] S. Scargall, Programming Persistent Memory. Intel, 2020.
[77] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,

“Rocking drones with intentional sound noise on gyroscopic sensors,”
in 24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
881–896.

[78] D. J. Sorin, “Computer architecture for orbital edge computing,” IEEE
Computer Architecture Letters, vol. 53, no. 04, pp. 7–8, 2020.

[79] F. Su, Y. Liu, Y. Wang, and H. Yang, “A ferroelectric nonvolatile
processor with 46µ s system-level wake-up time and 14µ s sleep time
for energy harvesting applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 64, no. 3, pp. 596–607, 2017.

[80] F. Su, K. Ma, X. Li, T. Wu, Y. Liu, and V. Narayanan, “Nonvolatile
processors: Why is it trending?” in Design, Automation & Test in

14

https://doi.org/10.1145/2670529.2754959
https://doi.org/10.1145/2930667


Europe Conference & Exhibition (DATE), 2017. IEEE, 2017, pp.
966–971.

[81] J. Swanner, J. Bito, G. Nichols, X. He, J. Hewett, and M. M. Tentzeris,
“Integrating multiple energy harvesting systems for department of
defense applications,” in EESAT Conference-Evolution & Revolution,
2017.

[82] M. K. Talarico, C. A. Haynes, J. S. Douglas, and J. Collazo, “Spa-
tiotemporal and kinematic changes in gait while carrying an energy
harvesting assault pack system,” Journal of biomechanics, vol. 74, pp.
143–149, 2018.

[83] S. K. Thirumala, A. Raha, H. Jayakumar, K. Ma, V. Narayanan,
V. Raghunathan, and S. K. Gupta, “Dual mode ferroelectric transistor
based non-volatile flip-flops for intermittently-powered systems,” in
Proceedings of the International Symposium on Low Power Electronics
and Design, 2018, pp. 1–6.

[84] Y. Tu, S. Rampazzi, B. Hao, A. Rodriguez, K. Fu, and X. Hei,
“Trick or heat? manipulating critical temperature-based control systems
using rectification attacks,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
2301–2315.

[85] Y. Tu, V. S. Tida, Z. Pan, and X. Hei, “Transduction shield: A low-
complexity method to detect and correct the effects of emi injection
attacks on sensors,” in ASIA CCS ’21: Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security, 2021, pp.
901–915.

[86] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan,
B. Sai, and H. Yang, “A 3us wake-up time nonvolatile processor based
on ferroelectric flip-flops,” in Proceedings of the ESSCIRC, 2012.

[87] J. V. D. Woude and M. Hicks, “Intermittent computation without
hardware support or programmer intervention,” in 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16).
Savannah, GA: USENIX Association, 2016, pp. 17–32.

[88] Z. Xiao, X. Tan, X. Chen, S. Chen, Z. Zhang, H. Zhang, J. Wang,
Y. Huang, P. Zhang, L. Zheng, and H. Min, “An implantable rfid sensor
tag toward continuous glucose monitoring,” IEEE journal of biomedical
and health informatics, vol. 19, no. 3, pp. 910–919, 2015.

[89] M. Xie, M. Zhao, C. Pan, J. Hu, Y. Liu, and C. J. Xue, “Fixing
the broken time machine: consistency-aware checkpointing for energy
harvesting powered non-volatile processor,” in Proceedings of the 52nd
Annual Design Automation Conference. ACM, 2015, p. 184.

[90] C. Yan, H. Shin, C. Bolton, W. Xu, Y. Kim, and K. Fu, “Sok: A
minimalist approach to formalizing analog sensor security,” in 2020

IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp.
233–248.

[91] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles:
Contactless attacks against sensors of self-driving vehicle,” in DEF
CON 24.

[92] M.-L. Yeh, W.-R. Liou, H.-P. Hsieh, and Y.-J. Lin, “An electromagnetic
interference (emi) reduced high-efficiency switching power amplifier,”
IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 710–718,
2009.

[93] K. S. Yildirim and P. Pawelczak, “On distributed sensor fusion in bat-
teryless intermittent networks,” in 2019 15th International Conference
on Distributed Computing in Sensor Systems (DCOSS). IEEE, 2019,
pp. 495–501.

[94] J. Zeng, J. Choi, X. Fu, A. P. Shreepathi, D. Lee, C. Min, and C. Jung,
“Replaycache: Enabling volatile cachesfor energy harvesting systems,”
in International Symposium on Microarchitecture, 2021.

[95] J. Zeng, S.-Y. Huang, J. Liu, and C. Jung, “Soft error resilience
at near-zero cost,” in Proceedings of the 38th ACM International
Conference on Supercomputing, ser. ICS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 176–187. [Online].
Available: https://doi.org/10.1145/3650200.3656605

[96] J. Zeng, J. Jeong, and C. Jung, “Persistent processor architecture,” in
Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 1075–1091. [Online].
Available: https://doi.org/10.1145/3613424.3623772

[97] J. Zeng, H. Kim, J. Lee, and C. Jung, “Turnpike: Lightweight soft error
resilience for in-order cores,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 654–666.

[98] J. Zeng, T. Zhang, and C. Jung, “Compiler-directed whole-system
persistence,” in 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA), 2024, pp. 961–977.

[99] Y. Zhang and C. Jung, “Featherweight soft error resilience for gpus,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 245–262.

[100] Y. Zhang and K. Rasmussen, “Detection of electromagnetic interfer-
ence attacks on sensor systems,” in 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 2020, pp. 203–216.

[101] Y. Zhou, J. Zeng, J. Jeong, J. Choi, and C. Jung, “Sweepcache:
Intermittence-aware cache on the cheap,” in Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture,
2023, pp. 1059–1074.

15

https://doi.org/10.1145/3650200.3656605
https://doi.org/10.1145/3613424.3623772

	Introduction
	Background and Motivation
	Intermittent System Architecture
	Roll-Forward Recovery: Just-In-Time Checkpoint
	Voltage Monitor
	Electromagnetic Interference Attack

	Threat Model
	Real System Demonstration
	Direct Power Injection Experiments
	Experimental Settings
	Attack Analysis

	Remote EMI Attack Experiments
	Experimental Settings
	Attack Analysis


	Countermeasures
	Conventional Countermeasures
	Hardware Solution
	Software Solution

	GECKO Compiler

	GECKO Implementation
	Detection of EMI Attacks
	Idempotent Processing with Lightweight Checkpointing
	Checkpoint Pruning
	Checkpoint Integrity
	Recovery Block
	Back to Normal!

	Evaluation
	Experimental Setting
	Performance Analysis
	Performance Analysis Without Power Outage
	Checkpoint Pruning Analysis
	Performance Analysis With EMI Attacks
	Performance Analysis In Real Energy Harvesting Environment

	Code Size Analysis
	Capacitor Size Variation

	Other Related Works
	Conclusion
	References

